Recursve Make Considered Harmful

Peter Miller
millerp@canb.auug.org.au

ABSTRACT

For large UNIX projects, the traditional method afildling the project is to use recwsi
male. On some projects, this results inild times which are unacceptablydar when

all you want to do is change one file. In examining the source of theverly long kuild
times, it becamewvident that a number of apparently unrelated problems combine to pro-
duce the delgyput on analysis all hee the same root cause.

This paper gplores a number of problemsgeeding the use of recurs male, and
shavs that thg are all symptoms of the same proble®ymptoms that the UNIX com-
munity hare long accepted as adt of life, lut which need not be enduredydonger
These problems include recusimales which tale “forever” to work out that thg need
to do nothing, recurgé males which do too much, or too little, recursimales which

are werly sensitve o changes in the source code and require conbtakéfile

vention to keep them wrking.

inter-

The resolution of these problems can be found by looking at mvake does, from first
principles, and then analyzing thdeets of introducing recurge male to this actvity.
The analysis shwes that the problem stems from the artificial partitioning of thikel into
separate subset3his, in turn, leads to the symptoms describ&dl asoid the symptoms,
it is only necessary toveid the separation; to use a singiale session to bild the
whole project, which is not quite the same as a sikiglkeefile

This conclusion runs counter to much accumulated folk wisdonildithg lage projects
on UNIX. Some of the main objections raised by this folk wisdom &esn@ed and
shavn to be unfoundedThe results of actual use as¥ fnore encouraging, with routine
development performance impvements significantlydster than intuition may indicate,
and without the intuitely expected compromise of modularitfhe use of a whole pro-
jectmaleis not as difficult to put into practice as it may at first appear

1. Introduction

For lage UNIX software deelopment projects,
the traditional methods ofuilding the project use
what has come to be kwa as ‘recursive male.”
This refers to the use of a hierayalf directories
containing source files for the modules which
malke W the project, where each of the sub-direc-
tories contains aVakefile which describes the
rules and instructions for theale program. The
complete project wild is done by arranging for
the top-leel Makefile to change directory into
each of the sub-directories and reotslyi invoke
male.

This paper eplores some significant problems
encountered when dedoping software projects
using the recurse male technique. Asimple
solution is ofered, and some of the implications

Copyright © 1997 Peter Miller; All rights reseszd.

Peter Miller

22 August 2002

of that solution arexplored.

Recursie male results in a directory tree which
looks something li& this:

(1 Project
[Makefile
(CJmodulel

E [) Makefile

[sourcel.c

[etc...
(1module2

E) Makefile

[source2.c

[etc...

This hierarcly of modules can be nested arbitrar
ily deep. Real-world projects often use tw and
three-level structures.

Page 1

AUUGN'97

1.1. AssumedKnowledge

This paper assumes that the readeansilfar with
developing software on UNIX, with themale pro-
gram, and with the issues of C programming and
include file dependencies.

This paper assumes that yowéanstalled GNU
Make an your system and are moderatedyriiliar
with its features. Some features ofmale
described belw may not be waailable if you are
using the limited grsion supplied by yourendor

2. TheProblem

There are numerous problems with recesi
male, and they are usually obserd daily in prac-
tice. Someof these problems include:

 Itis very hard to get therder of the recursion
into the sub-directories correcThis order is
very unstable and frequently needs to be manu-
ally “tweaked’ Increasing the number of
directories, or increasing the depth in the direc-
tory tree, cause this order to be increasingly
unstable.

It is dten necessary to do more than one pass
over the sub-directories touild the whole sys-
tem. This, naturally leads to xtended hild
times.

» Because theuilds tale © long, some depen-
dengy information is omitted, otherwise \ck-
opment hilds tale unreasonable lengths of
time, and the delopers are unprodueg.
This usually leads to things not being updated
when thg need to be, requiring frequent
“clean’ builds from scratch, to ensureveey-
thing has actually beerulit.

» Because intedirectory dependencies are either
omitted or too hard to xpress, theMake-
files are often written to dild too mud to
ensure that nothing is left out.

» The inaccurag of the dependencies, or the sim-
ple lack of dependencies, can result in a prod-
uct which is incapable of uilding cleanly
requiring the hild process to be carefully
watched by a human.

* Related to be ahe, some projects are inca-
pable of taking adwntage of arious ‘parallel
make” i mpementations, because theld does
patently silly things.

Not all projects gperience all of these problems.

Those that doxgerience the problems may do so

intermittently and dismiss the problems as une

plained ‘one of’’ quirks. Thispaper attempts to

Peter Miller

22 August 2002

Recursie Make Considered Harmful

bring together a range of symptoms obsdraer
long practice, and presents a systematic analysis
and solution.

It must be emphasized that this paper does not
suggest thatmale itself is the problem. This
paper is warking from the premise thatale does

not have a lug, thatmale doesnot have a esign
flaw. The problem is not imale at all, hut rather

in the input gien to male — the way male is
being used.

3. Analysis

Before it is possible to address these seemingly
unrelated problems, it is first necessary to under
stand whatmale does and hw it does it. It is
then possible to look at thefefts recursie male

has on he male behaves.

3.1. WholeProject Make

Make is an apert system.You gve it a set of
rules for hev to construct things, and a tgt to

be constructed.The rules can be decomposed
into pairwise ordered dependencies between
files. Make takes the rules and determinesiwhio
build the given target. Onceit has determined
how to construct the tayet, it proceeds to do so.

Make determines he to build the taget by con-
structing adirected acyclic gaph,the DAG famil-

iar to may Computer Science student¥he \er

tices of this graph are the files in the system, the
edges of this graph are the infide dependencies.
The edges of the graph are directed because the
pairwise dependencies are ordered; resulting in
an acyclic graph — things which look li& loops

are resoled by the direction of the edges.

This paper will use a smalkample project for its
analysis. Whilehe number of files in thisxam-
ple is small, there is didient complaity to
demonstrate all of the ab® recursve male prob-
lems. Firsthowever, the project is presented in a
non-recursie form.

(7 Project
[Makefile
[] main.c
[parse.c
[parse.h

The Makefile
this:

in this small project looks li&

Page 2

AUUGN'97

OBJ = main.o parse.o
prog: $(OBJ)
$(CC) -0 $@ $(0OBJ)
main.o: main.c parse.h
$(CC) -¢c main.c
parse.o: parse.c parse.h
$(CC) -c parse.c

Some of the implicit rules ahale are presented
here eplicitly, to assist the reader in ceerting
theMakefile into its equialent DAG.

The aboe Makefile can be dran as a BG in
the following form:

@ parse.o

This is anacyclic graph because of the aw®
which epress the ordering of the relationship
between the fileslf therewasa drcular depen-
deng according to the armgs, it would be an
error

Note that the object filesq() are dependent on
the include files.ti) even though it is the source
files (¢) which do the includingThis is because
if an include file changes, it is the object files
which are out-of-date, not the source files.

The second part of whatale does it to perform a
postoder traversal of the [AG. That is, the
dependencies are visited firSthe actual order of
traversal is undefined, Ut mostmale implementa-
tions work davn the graph from left to right for
edges bel the same ertex, and most projects
implicitly rely on this behegior. The last-time-
modified of each file isxamined, and higher files
are determined to be out-of-date ifyaof the
lower files on which the depend are younger
Where a file is determined to be out-of-date, the
action associated with the reéat graph edge is
performed (in the ab@ example, a compile or a
link).

The use of recurggé male affects both phases of
the operation ofale: it causesnale to construct
an inaccurate BG, and it forcesmale to traverse
the DAG in an inappropriate order

Recursie Make Considered Harmful

3.2. Recursve Make

To examine the décts of recursie males, the
abore example will be artificially sgmented into
two modules, each with itsven Makefile , and
a op-level Makefile used to imoke each of the
moduleMakefile s.

This example is intentionally artificial, and thor
oughly so. However, dl *‘modularity” of all pro-
jects is artificial, to somexeent. Considerfor
mary projects, the linkr flattens it all out agn,
right at the end.

The directory structure is as folls:

(7 Project
[Makefile
(—ant
T: [Makefile

[] main.c
(Cbee

[] Makefile

[parse.c

[parse.h

The top-leel Makefile often looks a lot lik a
shell script:

MODULES = ant bee

all:
for dir in $(MODULES); do \
(cd $$dir; S{MAKE} all); \
done

Theant/Makefile looks like this:

all: main.o

main.o: main.c ../bee/parse.h
$(CC) -1../bee -c main.c

and the equialent DAG looks like this:

Thebee/Makefile looks like this:

OBJ = ../ant/main.o parse.o
all: prog
prog: (OBJ)
$(CC) -0 $@ $(0BJ)
parse.o: parse.c parse.h
$(CC) -c parse.c

Peter Miller 22 August 2002 Page 3

AUUGN'97

and the equialent DAG looks like this:

@ parse.o

Take a dose look at the BGs. Noticehow nei-
ther is complete — there areertices and edges
(fles and dependencies) missing from both
DAGs. Whenthe entire bild is done from the
top level, everything will work.

But what happens when small changes occur?
For example, what wuld happen of the
parse.c and parse.h files were generated
from a parse.y yacc grammar?This would
add the follaving lines to thébee/Makefile

parse.c parse.h: parse.y
$(YACC) -d parse.y
mv y.tab.c parse.c
mv y.tab.h parse.h

And the equialent DAG changes to look lik this:

parse.o

This change has a simplefesdt: if parse.y s
edited,main.o will not be constructed correctly
This is because theAs for ant knows about
only some of the dependenciesméin.o , and
the DAG for bee knows none of them.

To understand withis happens, it is necessary to
look at the actionsnale will take from the top
level. Assume that the project is in a self-consis-
tent state.Now edit parse.y in such a \ay that
the generategarse.h file will have ron-trivial

Peter Miller

22 August 2002

Recursie Make Considered Harmful

differences. Haever, when the top-keel male is
invoked, firstant and thenbee is visited. But
ant/main.o is not recompiled, because
bee/parse.h has not yet beengenerated and
thus does not yet indicate thatin.o is out-of-
date. Itis not untilbee is visited by the recungé
male that parse.c and parse.h are recon-
structed, folleved byparse.o . When the pro-
gram is linked main.o andparse.o are non-
trivially incompatible. That is, the program is
wrong

3.3. Traditional Solutions

There are three traditional &g for the abee
“ glitch?”

3.3.1. Reshuffle

The first is to manually tweak the order of the
modules in the top-lel Makefile . But why is
this tweak required at alltsn’t male supposed to
be an &pert system?ls male somehw flaned,

or did something else go wrong?

To answer this question, it is necessary to look,
not at the graphsub theorder of taveisal of the
graphs. Inorder to operate correctlynale needs

to perform apostoder traversal, hut in separating
the DAG into two pieces, malke has not been
allowed to traverse the graph in the necessary
order - instead the project has dictated an order of
traversal. Anorder which, when you consider the
original graph, is plainvrong Tweaking the top-
level Makefile corrects the order to one similar
to that whichmale could hae wed. Untilthe
next dependencis added...

Note that“make -j " (parallel lild) invalidates
mary of the ordering assumptions implicit in the
reshufle solution, making it uselessAnd then
there are all of the sub-mads all doing their
builds in parallel, too.

3.3.2. Repetition

The second traditional solution is to neakore
than one pass in the topA# Makefile , some-
thing like this:

Page 4

AUUGN'97

MODULES = ant bee

all:
for dir in $(MODULES); do \
(cd $$dir; S{MAKE} all); \
done
for dir in $(MODULES); do \
(cd $$dir; S{MAKE} all); \
done

This doubles then length of time it &akto per
form the lild. But that is not all: there is no
guarantee that twpasses are enoughthe upper
bound of the number of passes is n@nepropor
tional to the number of modules, it is instead pro-
portional to the number of graph edges which
cross module boundaries.

3.3.3. Overkill

We havealready seen arxample of hav recur
sive male can hild too little, lut another com-
mon problem is to dild too much. The third tra-
ditional solution to the abe ditch is to add een
mote lines toant/Makefile

.PHONY: ../bee/parse.h
../bee/parse.h:
cd ../bee; \
make clean; \
make all

This means that whewmer main.o is made,
parse.h will always be considered to be out-of-
date. Allof bee will always be rehilt including
parse.h , and so main.o will always be
rekuilt, even if everything was self consistent.

Note that“make -j " (parallel lild) invalidates
mary of the ordering assumptions implicit in the
overkill solution, making it useless, because all of
the sub-ma&s are all doing theirdilds (“"clean”
then "all") in parallel, constantly interfering with
each other in non-deterministiays.

4. Prevention

The abee aalysis is based one one simple
action: the DG was artificially separated into

incomplete piecesThis separation resulted in all

of the problemsdmiliar to recursie male builds.

Did male get it wrong?No. Thisis a case of the
ancient GIGO principle:Garbage In, Garbaye
Out. IncompleteMakefile s ae wrong Make-
file s.

To avoid these problems, ddanbreak the BG
into pieces;instead, use onblakefile for the

Peter Miller

22 August 2002

Recursie Make Considered Harmful

entire project.lt is not the recursion itself which
is harmful, it is the crippledMakefile s which
are used in the recursion which aveong It is
not a deficieng of male itself that recursie male
is brolen, it does the best it can with thewféad
input it is gven.

“ But, kut, kut... You cant do that!” |

hear you cry “A dngle Makefile

is too big it's unmaintainable it's

too had to write the rules, you'll run

out of memoryl only want to lild

my little bit, the kild will take too

long. It's just not pactical.”

These arealid concerns, and thdrequently lead
male users to the conclusion that rexking their
build process does not ¥ aty short- or long-
term benefits. This conclusion is based on
ancient, enduringalse assumptions.

The followving sections will address each of these
concerns in turn.

4.1. ASingle Makefile

If the entire project bild description were placed
into a singleMakefile this would certainly be
true, havever modernmale implementations hee
include statements. Byncluding a relgant frag-
ment from each module, the total size of the
Makefile and its include files need be noger
than the total size of thdakefile s inthe recur
sive @se.

Is Too Big

4.2. ASingleMakefile Is Unmaintainable

The compleity of using a single top-lel Make-

file which includes a fragment from each mod-
ule is no more compethan in the recurge ase.
Because the BG is mot sgmented, this form of
Makefile becomes less compleand thusnore
maintainable, simply becausever “tweaks’ are
required to kep it working.

Recursve Makefiles have a geat deal of repe-
tition. Mary projects sole this by using include
files. By using a singleMakefile for the pro-

ject, the need for thécommon’ include files dis-
appears - the singlglakefile is the common
part.

4.3. It's Too Hard To Write The Rules

The only change required is to include the direc-
tory part in filenames in a number of plac&is

is because thenale is performed from the top-
level directory; the current directory is not the one
in which the file appearsiWhere the output file is

Page 5

AUUGN'97

explicitly stated in a rule, this is not a problem.

GCC allavs a-o option in conjunction with the
-c option, and GNU Ma& knows this. This
results in the implicit compilation rule placing the
output in the correct placeOlder and dumber C
compilers, hwever, may not allav the-o option
with the-c option, and will lease the object file
in the top-lee directory (.e. the wrong direc-
tory). Thereare three ways for you to fix this: get
GNU Make and GCC, werride the lilt-in rule
with one which does the right thing, or complain
to your \endor

Also, K&R C compilers will start the double-
qguote include path#{nclude " filenameh")
from the current directoryThis will not do what
you want. ANSIC compliant C compilers, o
eva, dart the double-quote include path from the
directory in which the source file appears; thus,
no source changes are requirdéidyou dont have

an ANSI C compliant C compileyou should
consider installing GCC on your system as soon
as possible.

4.4. 10nly Want To Build My Little Bit

Most of the time, deslopers are deep within the
project tree and tlyeedit one or two files and then
run male to compile their changes and try them
out. Theg may do this dozens or hundreds of
times a day Being forced to do a full project
build every time would be absurd.

Developers alvays hare the option of giing male

a Pecific taget. Thisis always the case, #' just
that we usually rely on the daflt taget in the
Makefile in the current directory to shorten the
command line for us.Building “my little bit”
can still be done with a whole projebtake-
file , dmply by using a specific tget, and an
alias if the command line is too long.

Is doing a full project bild every time so absurd?
If a change made in a module has repercussions in
other modules, because there is a depernydiec
developer is unware of (hut the Makefile is
awae of), isnt it better that the desloper find out
as early as possibleRependencies li this will

be found, because thedB is more complete than
in the recursie @ase.

The deeloper is rarely a seasoned old salt who
knows every one of the million lines of code in
the product.More likely the deeloper is a short-
term contractor or a juniorYou dont want impli-
cations lile these to blav up dter the changes are
integrated with the master source, yoant them

to blov up on the deeloper in some nice safe

Peter Miller

22 August 2002

Recursie Make Considered Harmful

sand-box &r avay from the master source.

If you want to mal “just your little” bit because
you are concerned that performing a full project
build will corrupt the project master source, due
to the directory structure used in your project, see
the *ProjectsversusSand-Boes’ section belav.

4.5. TheBuild Will Take Too Long

This statement can be made from one af per-
spectves. First,that a whole projectale, even
when &erything is up-to-date, ingtably talkes a
long time to perform. Secondly that these
inevitable delays are unacceptable when eelde
oper wants to quickly compile and link the one
file that thg havechanged.

4.5.1. Poject Builds

Consider a ¥pothetical project with 1000 source
(.c) files, each of which has its calling intsé
defined in a corresponding includé { file with
defines, type declarations and function prototypes.
These 1000 source files include theiwnointer
face definition, plus the inteate definitions of
ary other module thg may call. These 1000
source files are compiled into 1000 object files
which are then linkd into an recutable program.
This system has some 3000 files whichle must

be told about, and be told about the include
dependencies, and alsgpdore the possibility that
implicit rules (y - .c for example) may be
necessary

In order to bild the DAG, male must ‘stat”
3000 files, plus an additional 2000 files or so,
depending on which implicit rules younale
knows about and yourMakefile has left
enabled. Onthe authol humble 66MHz 486
this tales about 10 seconds; on matidsk on
faster platforms it goesven faster With NFS
over 10MB Ethernet it taks about 10 seconds, no
matter what the platform.

This is an astonishing statistidmagine being
able to do a single file compile, out of 1000
source files, in only 10 seconds, plus the time for
the compilation itself.

Breaking the set of files up into 100 modules, and
running it as a recung male takes about 25 sec-
onds. Therepeated process creation for the sub-
ordinatemale invocations tak quite a long time.

Hang on a minute!On real-vorld projects with
less than 1000 files, it tak an wful lot longer
than 25 seconds fonale to work out that it has
nothing to do.For some projects, doing it in only

Page 6

AUUGN'97

25 minutes wuld be an impreement! Theabove
result tells us that it is not the number of files
which is slaving us devn (that only taks 10 sec-
onds), and it is not the repeated process creation
for the subordinatenale invocations (that only
takes another 15 secondsJo just whais taking

so long?

The traditional solutions to the problems intro-
duced by recurge male often increase the num-
ber of subordinatenale invocations bgond the
minimum described here;g. to perform multiple
repetitions (3.3.2), or to verkill cross-module
dependencies (3.3.3)hese can taka bng time,
particularly when combined,ub do not account
for some of the more spectaculanild times;
what else is taking so long?

Complity of the Makefile is what is taking
so long. This is caered, belav, in the Efficient
Makefilessection.

4.5.2. Deelopment Builds

If, as in the 1000 file xample, it only taks 10
seconds to figure out which one of the files needs
to be recompiled, there is no serious threat to the
productvity of developers if thg do a whole-pro-
ject male as opposed to a module-specifiale.

The adantage for the project is that the module-
centric deeloper is reminded at ralent times
(and only relgant times) that their wrk has
wider ramifications.

By consistently using C include files which con-
tain accurate inteatce definitions (including func-
tion prototypes), this will produce compilation
errors in may of the cases which euld result in

a defectve poduct. By doing whole-project
builds, developers discaer such errors ery early

in the deelopment process, and can fix the prob-
lems when thgare least gpensve.

4.6. You'll Run Out Of Memory

This is the most interesting respong@nce long
ago, on a CPUatf, far avay, it may even have
been true. When Feldman [feld78] first wrote
male it was 1978 and he ag using a PDP11.
Unix processes were limited to 64KB of data.

On such a computethe abee poject with its
3000 files detailed in the whole-projeltake-
file , would probablynot allow the DAG and
rule actions to fit in memory

But we are not using PDPllsyamore. The
physical memory of modern computersceeds
10MB for small computers, and virtual memory

Peter Miller

22 August 2002

Recursie Make Considered Harmful

often exceeds 100MB.It is going to tak a po-
ject with hundreds of thousands of source files to
exhaust virtual memory on small modern com-
puter As the 1000 source filexample taks less
than 100KB of memory (try it, | did) it is unkgty
that ary project manageable in a single directory
tree on a single disk willxhaust your computes’
memory

4.7. Why Not Fix The DAG In The Modules?

It was shwn in the abwe dscussion that the
problem with recursie male is that the BGs ae
incomplete. Itfollows that by adding the missing
portions, the problemsauld be resoled without
abandoning the xésting recurste male invest-
ment.

» The deeloper needs to remember to do this.
The problems will not d&ct the deeloper of
the module, it will dect the deelopers of
other modules. Theras no trigger to remind
the deeloper to do this, other than the ire of
fellow devdopers.

It is dfficult to work out where the changes
need to be madePotentially @ery Makefile
in the entire project needs to beamined for
possible modifications.Of course, you can
wait for your fellov devdopers to find them for
you.

» The include dependencies will be recomputed
unnecessarilyor will be interpreted incorrectly
This is becausenale is string based, and thus
“."and “../ant” are two different places,wen

when you are in thant directory This is of

concern when include dependencies are auto-
matically generated - as there for all lage

projects.

By making sure that eacklakefile is com-
plete, you arxie & the point where thé/lake-

file for at least one module contains the gqui
alent of a whole-projecMakefile (recall that
these modules form a single project and are thus
inter-connected), and there is no need for the
recursion ayp more.

5. Efficient Makefiles

The central theme of this paper is themantic
side-efects of artificially separating iakefile

into the pieces necessary to perform a recersi
male. Howeve, once you hae a hrge number of
Makefile s, the speed at whiahale can inter
pret this multitude of files also becomes an issue.

Page 7

AUUGN'97

Builds can tak “forever” for both these reasons:
the traditional fies for the separateddG may be
building too muchand your Makefile may be
inefficient.

5.1. Deferred Evaluation

The tet in aMakefile must someho be read
from a tet file and understood bgnale so that
the DAG can be constructed, and the specified
actions attached to the edgekhis is all lept in
memory

The input language foMakefile s is decep-
tively simple. A crucial distinction that often
escapes both mes and xperts alile is that
male’s input language igext basedas opposed to
token based, as is the case for C WV Make
does the &ry least possible to process input lines
and stash themagy in memory

As an eample of this, consider the folling
assignment:

OBJ = main.o parse.o

Humans read this as theariable OBJ being
assigned tw filenames‘main.o” and “parse.o’.
But male does not see it thatay. Instead OBJ
is assigned thstring “ main.o parse.t’ It gets
worse:

SRC = main.c parse.c
OBJ = $(SRC:.c=.0)

In this case humansxgect male to assign tw
filenames to OBJ, li make actually assigns the
string ‘$(SRC:.c=.0). This is because it is a
macio language with deferred vauation, as
opposed to one with aviables and immediate
evduation.

If this does not seem too problematic, consider
the folloving Makefile

SRC = $(shell echo 'Ouch!’"\
1>&2 ; echo *.[cy])
oBJ =\
$(patsubst %.c,%.0,\
$(filter %.c,$(SRC))) \
$(patsubst %.y,%.0,\
$(filter %.y,$(SRC)))

test: $(OBJ)
$(CC) -0 $@ $(0BJ)

How mary times will the shell command be
executed? Ouch! It will be executedtwicejust to
construct the BG, and a furthertwo times if the
rule needs to bexecuted.

Peter Miller

22 August 2002

Recursie Make Considered Harmful

If this shell command does yhing comple or
time consuming (and it usually does) it will &k
four times longer than you thought.

But it is worth looking at the other portions of that
OBJ macro. Each time it is named, a huge
amount of processing is performed:

» The agument toshell is a single string (all
built-in-functions tale a s$ngle string agu-
ment). Thestring is &ecuted in a sub-shell,
and the standard output of this command is
read back in, translating wénes into spaces.
The result is a single string.

» The agument tofilter is a single string.This
argument is bro&n into two grings at the first
comma. Theséwo drings are then each bro-
ken into sub-strings separated by spac&he
first set are the patterns, the second set are the
filenames. Thenfor each of the pattern sub-
strings, if a filename sub-string matches it, that
filename is included in the outpuOnce all of
the output has been found, it is re-assembled
into a single space-separated string.

» The agument topatsubstis a single string.
This agument is bro&n into three strings at the
first and second commadhe third string is
then brolen into sub-strings separated by
spaces, these are the filenam€&hken, for each
of the filenames which match the first string it
is substituted according to the second stritig.

a filename does not match, it is passed through
unchanged. Oncall of the output has been
generated, it is re-assembled into a single
space-separated string.

Notice hav mary times those strings are disas-
sembled and re-assembledNotice hav mary
ways that happensThis is slow The ample
here names just mfiles lut consider he ineffi-
cient this would be for 1000 filesDoing it four
times becomes decidedly ifiefent.

If you are using a dumimale that has no substitu-
tions and no wbilt-in functions, this cannot bite
you. Buta mpdernmale has lots of hilt-in func-
tions and canwen invoke shell commands on-the-
fly. The semantics ahale’'s text manipulation is
such that string manipulation maleis very CPU
intensive, compared to performing the same string
manipulations in C or WK.

Page 8

AUUGN'97

5.2. ImmediateEvaluation

Modern male implementations he a immedi-
ate eduation “:= " assignment operatorThe
abore example can be re-written as

SRC := $(shell echo 'Ouch!"\
1>&2 ; echo *.[cy])
OBJ =\
$(patsubst %.c,%.0,\
$(filter %.¢,$(SRC))) \
$(patsubst %.y,%.0,\
$(filter %.y,$(SRC)))

test: $(OBJ)
$(CC) -0 $@ $(OBJ)

Note thatbothassignments are immediateskeia-
tion assignmentslf the first were not, the shell
command wuld alvays be &ecuted twice. If the
second were not, thexgensive sibstitutions
would be performed at least twice and possibly
four times.

As a rule of thumb: alays use immediatevelua-
tion assignment unless you kmagly want
deferred eauation.

5.3. IncludeFiles

Mary Makefile s perform the same x¢& pro-
cessing (the filters ake, for example) for gery
singlemale run, hut the results of the processing
rarely change Wherever practical, it is more &f
cient to record the results of thexttgorocessing
into a file, and hae the Makefile include this
file.

5.4. Dependencies

Don’t be miserly with include files.They are rel-
atively inexpensve © read, compared to
$(shell) , so more rather than less doesn’
greatly afect eficiengy.

As an e&le of this, it is first necessary to
describe a useful feature of GNU Makonce a
Makefile has been read in, if gnof its
included files were out-of-date (or do not yet
exist), they are re-liilt, and thenmale starts
again, which has the result thamale is nav
working with up-to-date include filesThis fea-
ture can bexploited to obtain automatic include
file dependenctracking for C sourcesThe olvi-
ous way to implement it, hoever, has a subtle
flaw.

Peter Miller

22 August 2002

Recursie Make Considered Harmful

SRC := $(wildcard *.c)
OBJ := $(SRC:.c=.0)
test: $(OBJ)
$(CC) -0 $@ $(OBJ)
include dependencies
dependencies: $(SRC)
depend.sh $(CFLAGS) \
$(SRC) > $@

Thedepend.sh script prints lines of the form

file.o: file.c includeh ...

The most simple implementation of this is to use
GCC, but you will need an equéalent avk script
or C program if you hae a dfferent compiler:

#l/bin/sh
gcc -MM -MG "$@"

This implementation of tracking C include depen-
dencies has seral serious fles, tut the one
most commonly disa@red is that thedepen-
dencies file does not, itself, depend on the C
include files. That is, it is not re4ilt in one of
the include files change§here is no edge in the
DAG joining thedependencies vertex to any

of the include file ertices. If an include file
changes to include another file (a nested include),
the dependencies will not be recalculated, and
potentially the C file will not be recompiled, and
thus the program will not be ratitt correctly

A classic lild-too-little problem, caused by\gi
ing male inadequate information, and thus caus-
ing it to kuild an inadequate AG and reach the
wrong conclusion.

The traditional solution is toudld too much:

SRC := $(wildcard *.c)
OBJ := $(SRC:.c=.0)
test: $(OBJ)

$(CC) -0 $@ $(0BJ)
include dependencies
.PHONY: dependencies

dependencies: $(SRC)
depend.sh $(CFLAGS) \
$(SRC) > $@

Now, even if the project is completely up-do-date,
the dependencies will be reilt. For a lage pro-
ject, this is ery wasteful, and can be a major con-
tributor tomale taking *forever’” to work out that
nothing needs to be done.

There is a second problem, and that is thatyf an
one of the C files changes|l of the C files will
be re-scanned for include dependenci€his is

Page 9

AUUGN'97

as ineficient as haing aMakefile which reads

prog: $(SRC)
$(CC) -0 $@ $(SRC)

What is needed, inxact analogy to the C case, is
to have ar intermediate form.This is usually
given a “.d " suffix. By exploiting the fct that
more than one file may be named in an include
line, there is no need tdinhk’’ all of the “.d ”
files together:

SRC := $(wildcard *.c)
OBJ := $(SRC:.c=.0)
test: $(OBJ)
$(CC) -0 $@ $(OBJ)
include $(OBJ:.0=.d)
%.d: %.c
depend.sh $(CFLAGS) $* > $@

This has one more thing to fix: just as the object
(.0) files depend on the source files and the
include files, so do the dependgiia) files.
file.d file.o: includeh

This means tindring with thedepend.sh script
again:

#1/bin/sh

gcc -MM -MG "$@" |

sed -e 's@"\(*\W\.o:@\1.d \1.0:@’

file.c

This method of determining include file depen-
dencies results in thdakefile including more
files than the original methodubopening files is
less a&pensve than relilding all of the depen-
dencies eery time. Typically a deeloper will
edit one or tw files before re4bilding; this
method will reliild the exact dependeng file
affected (or more than one, if you edited an
include file). On balance, this will use less CPU,
and less time.

In the case of auild where nothing needs to be
done, male will actually do nothing, and will
work this out \ery quickly

However, the abee technique assumes your pro-
ject fits enitrely within the one directoryFor
large projects, this usually ignthe case. This
means tinkring with the depend.sh script
again:

Peter Miller

22 August 2002

Recursie Make Considered Harmful

#!/bin/sh

DIR="$1"

shift 1

case "$DIR" in

")

gcc -MM -MG "$@" |

sed -e 's@"\(*\)W\.o:@\1.d \1.0:@’

5
gcc -MM -MG "$@" |
sed -e "s@"\(*\)\.0:@$DIRN\1.d $DIRA1l.0:@"

esac

And the rule needs to change, too, to pass the
directory as the first gument, as the script
expects.

%.d: %.c
depend.sh ‘dirname $** $(CFLAGS) $* > $@

Note that thed files will be relatve o the top
level directory Writing them so that thecan be
used form an levd is possible, bt bgyond the
scope of this paper

5.5. Multiplier

All of the ineficiencies described in this section
compound togetherlf you do 100Makefile
interpretations, once for each module, checking
1000 source files can tala \ery long time - if
the interpretation requires complprocessing or
performs unnecessaryowk, or both. A whole
project male, on the other hand, only needs to
interpret a singl&akefile

6. ProjectsversusSand-boxes

The abwe dscussion assumes that a project
resides under a single directory tree, and this is
often the ideal.However, the realities of wrking
with large softvare projects often lead to weird
and wonderful directory structures in order to
have devdopers vorking on diferent sections of
the project without taking complete copies and
thereby vasting precious disk space.

It is possible to see the whole-projectle pro-
posed here as impractical, because it does not
match the wolved methods of your gelopment
process.

The whole-projectale proposed here doesvea
an efect on dgelopment methods: it can\g you
cleaner and simpleruldd ervironments for your
developers. Byusingmale's VPATH feature, it is
possible to coponly those files you need to edit

Page 10

AUUGN'97

into your prvate work area, often called sand-
box.

The simplest xplanation of what VRTH does is

to male an analogy with the include file search
path specified usingl pathoptions to the C com-
piler. This set of options describes where to look
for files, just as VRTH tells male where to look
for files.

By using VRATH, it is possible to‘stack” the
sand-boxon top ofthe project master source, so
that files in the sand-box takrecedence, it is
the union of all the files whicinale uses to per
form the luild.

;| Master Soure ,
) ERE - f Combined éw
/ parse.y :
main.c
Sand-Box parse.y
main.c / variable.c
/
variable.c !

In this ewvironment, the sand-box has the same
tree structure as the project master sourtieis
allows developers to safely change things across
separate modulesg. if they are changing a mod-
ule interbce. Italso allavs the sand-box to be
physically separate — perhaps on datiént disk,

or under their home directaonyit also allavs the
project master source to be read-oiflyou have

(or would like) a rigorous check-in procedure.

Note: in addition to adding ¥PATHIine to your
development Makefile , you will also need to
add-1 options to theCFLAGSmacro, so that the
C compiler uses the same path remle does.
This is simply done with a 3-line Mafile in your
work area — set a macro, set theATI, and then
include the Makfile from the project master
source.

6.1. VPATH Semantics

For the abwe dscussion to applyou need to use
GNU male 376 or later For versions of GNU
Make arlier than 3.76, you will need aBl
Smith’s VPATH+ patch. This may be obtained
from ftp://ftp.wellfleet.com/-
netman/psmith/gmake/

The POSIX semantics o/ PATH are slightly
brain-dead, so magnother male implementations
are too limited. You may want to consider
installing GNU Male.

Peter Miller

22 August 2002

Recursie Make Considered Harmful

7. TheBig Picture
This section brings together all of the preceding

discussion, and presents themple project with
its separate modulesutwith a whole-project
Makefile . The directory structure is changed
little from the recursie ase, &cept that the
deeperMakefiles are replaced by module spe-
cific include files:

(7 Project
— [Makefile
—(ant
T: 7] module.mk
[main.c
—(Cbee
T:) module.mk

[parse.y
L[depend.sh

TheMakefile looks like this:

MODULES := ant bee

| ook for include files in

each of the modules

CFLAGS += $(patsubst %,-1%,\
$(MODULES))

extra libraries if required

LIBS =

each module will add to this

SRC =

i nclude the description for

each module

include $(patsubst %\

%/module.mk,$(MODULES))

determine the object files

OBJ = \

$(patsubst %.c,%.0, \
$(filter %.c,$(SRC))) \

$(patsubst %.y,%.0, \

$(filter %.y,$(SRC)))

| ink the program
prog: $(OBJ)

$(CC) -0 $@ $(OBJ) $(LIBS)
i nclude the C include
dependencies
include $(OBJ:.0=.d)
calculate C include
dependencies
%.d: %.c

depend.sh $(CFLAGS) $< > $@

This looks absurdly Ige, hut it has all of the
common elements in the one place, so that each
of the modulesmale includes may be small.

Page 11

AUUGN'97

Theant/module.mk file looks like:
SRC += ant/main.c
Thebee/module.mk file looks like:

SRC += bee/parse.y

LIBS +=-ly

%.c %.h: %.y
$(YACC) -d $*.y
mv y.tab.c $*.c
mv y.tab.h $*.h

Notice that the wilt-in rules are used for the C
files, hut we need special yacc processing to get
the generated file.

The saings in this gample look irreleant,
because the topye Makefile is so lage. But
consider if there were 100 modules, each with
only a fav non-comment lines, and those specifi-
cally relevant to the module.The saings soon
add up to a total size oftdess tharthe recursie
case, without loss of modularity

The eqwaent DAG of the Makefile
of the includes looks lithis:

after all

The \ertexes and edges for the include file depen-
deng files are also present as these are important
for male to function correctly

7.1. SideEffects

There are a couple of desirable sidieef of
using a single Madfile.

» The GNU Male -j option, for parallel bilds,
works esen better than beforelt can find een
more unrelated things to do at once, and no longer
has some subtle problems.

» The general mak-k option, to continue asaf
as possibleven in the face of errors, wrks e/en
better than beforelt can find @en more things to

Peter Miller

22 August 2002

Recursie Make Considered Harmful

continue with.

8. Literatur e Survey

How can it be possible that we Veleen misus-
ing male for 20 years?How can it be possible
that behwior previously ascribed tonale's limi-
tations is in &ct a result of misusing it?

The author only started thinking about the ideas
presented in this paper wheacéd with a number
of ugly kuild problems on utterly dérent pro-
jects, lut with common symptomsBy stepping
back from the indiidual projects, and closely
examining the thing thehad in commonmale, it
became possible to see thegkarpattern.Most of

us are too caught up in the minutiae of just getting
the rotten hild to work that we dort’havetime to
spare for the big pictureEspecially when the
item in question ‘6bviously” works, and has
done so continuously for the last 20 years.

It is interesting that the problems of recuesi
male are rarely mentioned in thery books Unix
programmers rely on for accurate, practical
advice.

8.1. TheOriginal Paper

The originalmale paper [feld78] contains no ref-
erence to recungé male, let alone an discussion
as to the relate merits of whole projecmale
ove recursve male.

It is hardly surprising that the original paper did
not discuss recung male, Unix projects at the
time usuallydid fit into a single directory

It may be this which set théohe Makefile in
evay directory’ concept so firmly in the collec-
tive Unix development mind-set.

8.2. GNUMake

The GNU Male manual [stal93] contains weral
pages of material concerning recuesimale,
however its discussion of the merits or otherwise
of the technique are limited to the brief statement
that

“This technique is useful when you
want to separate makiles for \arious
subsystems that compose ag&r
systent.
No mention is made of the problems you may
encounter

Page 12

AUUGN'97

8.3. ManagingProjects with Make

The Nutshell Mak ook [talb91] specifically pro-
motes recurse male over whole projectmale
because

“The cleanest ay to huild is to put a
separate description file in each
directory and tie them together
through a master description file that
invokes male recursvely. While
cumbersome, the technique is easier
to maintain than a single, enormous
file that caovers multiple directories.

(p. 65)

This is despite the boak’advice only tw para-
graphs earlier that

“male is happiest when youelep all
your files in a single directoty (p.
64)

Yet the book &ils to discuss the contradiction in
these tw gatements, and goes on to describe one
of the traditional \ays of treating the symptoms
of incomplete AGs caused by recungg male.

The book may ge s a due as to wii recursve
male has been used in thisay for so mayp years.
Notice hav the abwe quotes confuse the concept
of a directory with the concept of\dakefile

This paper suggests a simple change to the mind-
set: directory trees, hever deep, are places to
store filesMakefile s ae places to describe the
relationships between those filesyaser mary.

8.4. BSDMake

The tutorial for BSD Ma& [debo88] says nothing
at all about recurge male, but it is one of the fe
which actually described, t@ver briefly, the
relationship betweeniakefile and a AG (p.
30). Therds also a wnderful quote

“1f male doesnt do what you &pect

it to, it's a god chance thenake-

file iswrong’ (p. 10)
Which is a pitly summary of the thesis of this
paper

9. Summary

This paper presents a number of related problems,
and demonstrates that thare not inherent limita-
tions of male, as is mmmonly beliged, hut are

the result of presenting incorrect information to
male. This is the ancienGarbage In, Garbage

Out principle at vork. Becausemale can only
operate correctly with a completedAB, the error

Peter Miller

22 August 2002

Recursie Make Considered Harmful

is in sgmenting theMakefile
pieces.

into incomplete

This requires a shift in thinking: directotyees

are simply a place to hold fileglakefile s ae a
place to remember relationships between files.
Do not confuse the twbecause it is as important
to accurately represent the relationships between
files in diferent directories as it is to represent the
relationships between files in the same directory
This has the implication that there should be
exactly one Makefile for a project, bt the
magnitude of the description can be managed by
using amale include file in each directory to
describe the subset of the project files in that
directory This is just as modular as\hag a
Makefile in each directory

This paper has shm hov a project uild and a
development liild can be equally brief for a
whole-projectmale. Given this parity of time,
the ains preoided by accurate dependencies
mean that this process will, iadt, be &ster than
the recursie male case, and more accurate.

9.1. Inter-dependent Ppjects

In organizations with a strong culture of re-use,
implementing whole-projectmale can present
challenges. Risingo these challenges, \wever,
may require looking at the bigger picture.

* A module may be shared betweenotyro-
grams because the programs are closely related.
Clearly, the two programs plus the shared mod-
ule belong to the same project (the module may
be self-contained, Ut the programs are not).
The dependencies must bepkcitly stated, and
changes to the module must result in both pro-
grams being recompiled and re-letkas appro-
priate. Combininghem all into a single pro-
ject means that whole-projettale can accom-
plish this.

* A module may be shared betweerotaojects
because themust interoperate. Possiblyour
project is bigger than your current directory
structure implies. The dependencies must be
explicitly stated, and changes to the module
must result in both projects being recompiled
and re-linlked as appropriateCombining them
all into a single project means that whole-pro-
jectmale can accomplish this.

 Itis the normal case to omit the edges between
your project and the operating system or other
installed third party toolsSo normal that the
are ignored in thevlakefile s in this paper
and thg are ignored in the dilt-in rules of

Page 13

AUUGN'97

male programs.

Modules shared between your projects nadly f
into a similar catgory: if they change, you will
deliberately re-bild to include their changes,
or quietly include their changes whe&eethe
next build may happen.n either case, you do
not eplicitly state the dependencies, and
whole-projectmale does not apply

* Re-use may be better sed/if the module were
used as a template, andelgence between tw
projects is seen as normaDuplicating the
module in each project alis the dependencies
to be eplicitly stated, It requires additional
effort if maintenance is required to the common
portion.

How to dructure dependencies in a strong re-use
ervironment thus becomes arxegecise in risk
mangement What is the danger that omitting
chunks of the BG will harm your projects?
How vital is it to relwild if a module changes?
What are the consequencesotreluilding auto-
matically? Hev can you tell when a reiid is
necessary if the dependencies are nqlictly
stated? Whaare the consequences ofdetting

to retuild?

9.2. Retum On Investment

Some of the techniques presented in this paper
will improve the speed of yourdilds, e/en if you
continue to use recuv& male. These are not the
focus of this papemerely a useful detour

The focus of this paper is that you will get more
accurate bilds of your project if you use whole-
projectmale rather than recunge male.

» The time formale to work out that nothing
needs to be done will not be more, and will
often be less.

» The size and comptay of the total Make-
file input will not be more, and will often be
less.

» The totalMakefile input is no less modular
than in the resurgé @ase.

» The dificulty of maintaining the totaMake-
file input will not be more, and will often be
less.

The disadantages of using whole-projentale
ove recursie male are often un-measureddow
much time is spent figuring out whmale did
something unegected? He much time is spent
figuring out thamale did something ungected?
How much time is spent tirdeing with the hild

Peter Miller

22 August 2002

Recursie Make Considered Harmful

process? Thesactiities are often thought of as
“ normal’ devdopment werheads.

Building your project is a fundamental auty. If

it is performing poorly so ae deelopment,
delugging and testing.Building your project
needs to be so simple thewssst recruit can do it
immediately with only a single page of instruc-
tions. Buildingyour project needs to be so simple
that it rarely needs gdevdopment efort at all.

Is your huild process this simple?

10. Refeences

debo88: Adam de Boor (1988)PMake -
A Tutorial. University of California, Berkley

feld78: Stuart I. Feldman (1978)Make —
A Program for Maintaining Computer Rigrams
Bell Laboratories Computing Sciencechnical
Report 57

stal93: Richard M. Stallman and Roland
McGrath (1993). GNU Male: A Pogram for
Directing Recompilation Free Softvare Founda-
tion, Inc.

talb91: Steve Talbott (1991). Managing
Projects with Mak, 2hd Ed O'Reilly & Associ-
ates, Inc.

11. Aboutthe Author

Peter Miller has wrked for may years in the
software R&D industry principally on UNIX
systems. Inthat time he has written tools such
as Agis (a softvare configuration management
system) and Cook (yet anothaale-oid), both of
which are freely wailable on the Internet.Sup-
porting the use of these tools at mamternet
sites preided the insights which led to this paper

Please visithttp://www.canb.auug.org-
.aul"millerp/ if you would like o look at
some of the autha’free softvare.

Page 14

